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Abstract

In this chapter, the various approaches for the macroscopic modetmagsport phenomena

in polymer-electrolyte membranes are discussed. This includesrajebackground and

modeling methodologies, as well as exploration of the governingiegsi@nd some membrane-

related topic of interest.
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1 Introduction

The polymer-electrolyte or proton-exchange membrane (PEM) is tiré dfethe so-called
fuel-cell sandwichi(e., membrane, catalyst layers, and diffusion media), and hence, the enti
fuel cell. It is this electrolyte that makes polymer-eilggte fuel cells (PEFCs) unique.
Correspondingly, the electrolyte must have very specific propeitisseds to conduct protons
but not electrons, as well as inhibit gas transport in the sepdmat allow it in the catalyst
layers. Furthermore, the membrane is one of the most impaieams in the crucial topic of
PEFC water management. It is for these reasons as vwghexrs that modeling and experiments
of the membrane have been pursued more than any other layer [1].

Although there have been various membranes used, none is more researsded as the
standard than the NafiBrfamily by E. I. du Pont de Nemours and Company. Like almost all
fuel-cell membranes, Nafi6his a copolymer with essentially hydrophobic and hydrophilic
moieties. Specifically, Nafihis a copolymer of polytetrafluoroethylene and polysulfonyl
fluoride vinyl ether; its formula is given in Figure 1. Thes#dlperinated sulfonic acid (PFSA)
ionomers have fixed anions, which are sulfonic acid sites, and consggbgrelectroneutrality,
the concentration of positive ions remains fixed. They also exhdnityrmteresting properties
such as a high conductivity, prodigious water uptake, and high anion exchasitame a few.
Nafion® is the main membrane discussed in this review.

Although Nafiorf is the focus, the models presented can (and some have been) easily
adapted for other membranes such as hydrocarbon ones. Such an adapjaities altering the
various membrane physical and transport properties, but not the goveguatonsi(e., the
same underlying physics govern transport of the various spediég).main reason is that the

models presented herein are macroscopic and basically average thevemicroscale



heterogeneities that make the membranes unique. In a sfaslaon, although the models
reviewed and discussed are primarily for hydrogen-fuele#(RE they can be used and
appropriately altered for other systems like direct-methanol fuel (€$-Cs).

The focus of this review is to discuss the different macroscopieckll-membrane models
with the overall goal of presenting a picture of the variousstygdransport in the membrane.
Although the majority of the relevant literature models has been examinedateeindoubtedly
some that were left out. This is especially the casdhimse models that have a membrane
model but it is not the important feature. For such cases, reéei®mecade to a representative
example model from the research group, even though there mauvltylerpapers published
from that group using that model but focusing on other PEFC layers and phendmemms of
time frame, this review focuses on models that have been published through the middle of 2005.

There are four other recent review articles dealing witmbrane modeling that should be
noted. First, those of Weber and Newman [1] and Wang [2] exammaedoscopic fuel-cell
models through the end of 2004, but only briefly touched on the membrane m8delkrly,
that of Fimriteet al [3] did not go into a lot of depth in terms of membrane models, and it
focused mainly on those that use concentrated solution theory. Fihallseview of Kreueet
al. [4] examined microscopic and atomistic membrane models in deéait, and thus they are
not addressed in this chapter.

This review chapter can be broken down into various sections. Baskground is
presented discussing modeling methodologies and a physically loasdithtive model of the
structure of the membrane. Next, the general governing equat®nssaussed in terms of the
various modeling approaches, including proton, water, energy, and gas fliike third main

section deals with models aimed at predicting transport propeadies as conductivity and



especially the membrane water content. In the final mainosecome specialized topics in
membrane modeling are mentioned including membrane in the cdtalgss, effect of ions in

the membrane, durability, and DMFCs.

2 Background

At its simplest, a membrane model should predict the water fhaxtlae potential drop
through the membrane. The potential drop is necessary in calgytetarization effects, and
the water flux directly impacts the water management ofudélecell, which is perhaps the most
significant component of fuel-cell performance. The models usectlcpthese two quantities
vary greatly in complexity. While some try to understand fundaaligiwhat is occurring in the
membrane, others just calculate the values and perhaps only erypirMélile the former are
useful in optimizing and designing membranes, the latter are faworedmplex simulations
such as those examining stack or three-dimensional (3-D) effdctsMost of the models
discussed in this chapter focus on the more complex and macroscopic approaches.

A good model of the membrane must contain certain key elementsmést among these is
that it must be based on and agree with the physicalyreald phenomena that have been
observed with these membranes. Furthermore, expressions for ihesvaroperties of the
membrane should have the relevant dependences such as on temperatuatearmbnient.
These property expressions can be found by everything from empeiesibns to detailed
molecular modeling. The water content should also be modeled or aatdonand allowed to
vary in a systematic and continuous fashion. Finally, a model shoutdbdethe three main

fluxes in the membrane, as shown in Figure 2.



The three main fluxes through the membrane are a proton fluxgtiest from anode to
cathode, a water electro-osmotic flux that develops along with thterpflux, and a water-
gradient flux. This last flux is sometimes known as the waaek flux or back-diffusion flux,
and, as discussed in section 3.2, has various interpretations includingpdjftenvection, and
combinations thereof. Furthermore, these interpretations often teediterentiate membrane
models. In addition to the above three fluxes, there are also fliweeso crossover of oxygen
and hydrogen, which are described in section 3.4.

This section is comprised of two main themes that set the &aghe presentation and
discussion of the various models in later sections. The firstethethe modeling methodology,
and the second is the physical model or representation of membmacters as a function of
water content. Before proceeding to discuss these themespsamien should be made about

empirical models and fuel-cell performance in general.

2.1 Fuel-cell performance and empirical models

As noted above, a membrane model is mainly about predicting perfoenissues due to
transport in the membrane. The performance of a fuel cell isoftea reported in the form of a
polarization curve, as shown in Figure 3. Roughly speaking, the @ianzcurve can be
broken down into three main regions. At low currents, the behavioru#l aéll is dominated
by kinetic losses, which are not directly attributable to the bmane. As the current is
increased, ohmic losses become a factor in lowering the ovellapjatential. These ohmic
losses are mainly from ionic losses in the membrane both inpheaser and the electrodes. At
high currents, mass-transport limitations become increasinglgriant. These losses are due to

reactants not being able to reach the reaction sites. Typiocaygen is the problem due to



flooding of the cathode by liquid water, and thus the water manageoierthat the membrane
plays is important. Of greater impact by the membrane isithabecomes dehydrated, a
limiting current can be realized due to the protons inability to reach the reatdsze s

To capture the above effects, including those in the membrane, eshpindels have been
used. These are not rigorous models, per se, but instead are educatefits using at most

semiempirical expression [1, 5, 6]; an example of such a curve is [1, 7, 8]

V =U"® —blog(i)- R, +b|og(1—_i—j 1)

lim
whereR, is the constant resistance in the fuel deils the Tafel slopd,)’ is the standard cell

potential, andv, i, andi, are the cell potential, current density, and lingtcurrent density,

respectively. While such an approach is usefuhaudeling complex geometries and stacks, it is
not predictive and not truly a model of the membraithis is especially apparent in examining
Figure 3, where one cannot easily distinguish lineet regions from one another just by looking
at the polarization curve (solid line). For exaa)ghe so-called ohmic or linear portion of the
curve actually has mass-transport and other effegtsas seen in the breakdown of the curve in
the figure. Thus, a fit to a polarization curvea@t truly yielding the resistance of the membrane,
which may not even have a uniform conductivity.rtRermore, the impact of the role that the
membrane plays in water management cannot be §adnising such a simple approach.

To expand on the last point, empirical models alsy or may not examine the water
balance, and if they do, then a net water fluxugtothe membrane is used. This value is either
calculated from experimental water-balance datgusir assumed. The latter is typically used
when the goal of the model is to examine some dtiedrcell layer such as the diffusion media

or catalyst layers. The assumption of a net whter greatly aids in the convergence and



robustness of a program; however, like using astasce above, it makes the model less

predictive and helpful in understanding membranenpmena.

2.2 Modeling methodologies

In terms of both quantitative and qualitative maugl PEMs have been modeled within two
extremes, the macroscopic and the microscopicjsasigsbed in recent review articles [1, 2, 4].
The microscopic models provide the fundamental tstdading of processes like diffusion and
conduction in the membrane on a single-pore or ewefecular level. They allow for the
evaluation of how small perturbations like heterugty of pores and electric fields affect
transport, as well as the incorporation of smadilseffects. Although the microscopic models
may provide more realistic conditions and factah®y require a lot more knowledge of the
microstructure and are much more computationallyeesive. For these reasons and also to
allow modeling of entire fuel-cell behavior, maaopic models are more commonly used,
although some microscopic details should be inaated into them. This review focuses on
macroscopic models or those that utilize a macrageneous approach.

In a macrohomogeneous approach, the exact geondetiads of the modeling domain are
neglected. Instead, the domain is treated asdonaly arranged structure that can be described
by a small number of variables. Furthermore, tarts properties within the domain are
averaged over the membrane volume. Thus, all Masaare defined at all positions within the
domain. Averaging is performed over a region tisasmall compared to the size of the
membrane, but large compared to its microstructure.

The macroscopic membrane models can be placed timee main categories. The

differentiation is basically made on how the modeéat water movement in the membrane.



This distinction is also typically what differentés fuel-cell models from each other. The first
category treats water transport as if by diffusiangd thus is termed diffusive. This type of
model implicitly assumes that the membrane is glsiphase and was popularized for fuel cells
by Fuller and Newman [9] and Springetral [10] A problem with this approach is that when
the membrane is saturated, it does not make sensave only a diffusive flow since the
concentration of water in the membrane is unifotimeye is no concentration gradient. Hence,
another model should be used in this casg, (@ hydraulic one).

The second category of membrane models treats #ter wnovement as if by convection,
and thus is termed hydraulic. This system expficieats the membrane as two phases. The
most recognized type of this model was done by &welirand Verbrugge [11, 12]. A problem
with these models arises for the case of a memhraaelow-relative-humidity reservoir. In
such a system there is not a continuous liquidvpayhacross the medium, and the membrane
matrix interacts significantly with the water dwethe binding and solvating of the sulfonic acid
sites. Thus, a concentration gradient and notafrteydraulic pressure of liquid water, which
might not even be defined, seems to be the moreoppate driving force; a one-phase model
should be used.

The third category treats the water movement dsyifa combination of the above two
methods, and thus is termed combination. Such mae to explain transport across the
whole range of possible membrane water contentvadde the gap between the two categories
above. Essentially, the two approaches above tgateone limit of water concentration, and
are then somehow averaged between those limitslf]3, The three main model categories are

examined in more detail and in terms of equationsection 3.2



2.3 Membrane physical picture

To model the membrane, one requires a physicak b@spicture in order to ensure the
correct mathematical treatment and applicatiorhefunderlying physics and phenomena. The
crucial component for such a picture is how the torame changes and interacts with water as a
function of water content.

The water content of a membrane is typically giuvenerms ofi, a ratio of the moles of
water per mole of sulfonic acid sites. This vakiaormally given in the form of a water-uptake
isotherm [15-20], as shown in Figure 4. Such aathisrm is typically determined
experimentally, but there are some models that tainpredict at least part of the curve as
discussed in section 4.1. The dashed line in Eigurepresents what is known as Schréder’s
paradox [21], a phenomenon which occurs in manfgrdint polymers and gels. In essence, the
paradox is that the membrane exhibits a differemcevater uptake (and therefore other
properties) only due to the phase of the resemaipntact with the membraneg, the chemical
potential remains constant). As seen in Figureéhd, water content of the membrane in a
saturated-vapor reservoir is significantly lowearththat in a liquid-water reservoir. This is an
important issue since fuel cells are often operatgld humidified gases, resulting in situations
where there is liquid water on the cathodic sidehef membrane and only water vapor on the
anodic side. With this introduction, one can noissdct the isotherm and relate it to the
membrane microstructure.

The general structure of Nafidnand ionomers in general, as a function of wabetent has
been the source of many studies, as recently reddw Mauritz and Moore [22] and Kreusr
al. [4]. The experimental data show that a hydraitemnbrane phase segregates into ionic and

matrix or nonionic phases. The ionic phase is@ated with the hydrated sulfonic acid groups,
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and the matrix phase with the polymer backboneusTtvater is associated with the hydrophilic
ionic phase and not the hydrophobic matrix phddee actual way in which the phases segregate
within the polymer depends on the water content atiger factors including pretreatment
procedures, operating temperature, side-chain heragtd equivalent weight, to name a few.
Finally, based on various experimental data, acss transported through the membrane move
by way of the ionic phase [10, 23, 24]. Therefdine, nonionic fluorocarbon matrix can be taken
as inert. Its roles are to add mechanical strermgttd hydrophobicity, thus aiding in the
membrane microstructure and preventing dissolution.

Starting from the dry-membrane case, water inytifdydrates the sulfonic acid sites and
allows them to dissociate partially. This firsttesais very tightly bound and hard to move. The
next few water molecules serve to hydrate the sudfacid sites further beyond their primary
shell. This allows for a reorganization of the ntieame microstructure into ionic and nonionic
domains. Consequently, the conductivity of the ineme greatly increases when this occurs
(A=2) [25]. As the membrane continues to take up myvdtee ionic domains continue to
organize and enlarge. The ideal picture of thesghsegregation is known as the cluster-network
model first proposed by Hsu and Gierke [24]. lis idealized picture, the water is contained in
a spherical domain about 4 nm in diameter into twhiee polymer side-chains infiltrate. The
inverse micelle domains form based on a balanced®szt the surface or electrostatic energy due
to the coulombic repulsions of the sulfonic acidugps and the elastic or deformation energy due
to the work required to deform the polymer matrixthe ionic clusters are connected by
interfacial regions or bridging-site pathways abdutnm in diameter [26]. These were
determined by Hsu and Gierke to be transient cdrorer with a stability on the order of

ambient thermal fluctuations, in agreement with ecalar-dynamics simulations [4, 27, 28].
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While the cluster-network model is an idealizeduypie, it provides a useful visualization of the
polymer phase-separated microstructure.

As the membrane becomes more hydrated, the sultariit sites become associated with
more water, allowing for a less bound and more {ikkk water to form. This new water is no
longer strongly influence by the dielectric propestof the sulfonic acid groups and is essentially
enlarging the ionic domains by filling them in witrater. This is why there is a flattening out of
the slope abové = 6 in the uptake isotherm (see Figure 3). Thieeexe case is when the
membrane is placed in a liquid-water reservoir, nh@e ionic domains swell and a bulk-like
liquid-water phase comes into existence throughbat membrane. The way in which this
rearrangement and phase-transition-type behaviaurscis currently unknown exactly.
However, it is probably due to the interfacial pedmes of the membrane, such as the
fluorocarbon-rich skin on the surface of Naffof29, 30] or the removal of a liquid-vapor
meniscus at the membrane surface [31]. Overad, fihal picture of a liquid-equilibrated
membrane is a porous structure, with average chamadecluster sizes between 1 and 2 nm and
2 to 4 nm, respectively [32, 33].

In summary, Figure 5 is a schematic of how wategracts with the membrane. In the first
panel, at low water contents, the water is stromglynd and solvates the sulfonic acid groups.
Additional water causes the water to become lessidbowvith some bulk-like water forming, the
second panel. With more water uptake, ionic dosgnow and form interconnections with each
other through a percolation-type phenomenon. Tdwmnections, or collapsed channels, are
transitory and have low concentrations of sulfaga sites (similar to the first two panels). The
lower left panel corresponds to a membrane thet c®ntact with saturated water vapor, where

such a cluster-channel network has formed. Wheretis liquid water at the boundary of the
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membrane, structural reorganization and a phassiti@ occur, allowing for bulk-like liquid
water to exist in the channels, resulting in a gike structure, the final panel in Figure 5.
Because the channels are now filled with liquice tiptake of the membrane has increased
without a change in the chemical potential of tlegew {(.e., Schréder’s paradox). Finally, it was
noted above that the cluster-channel representasownery idealized. A more realistic
representation based on experimental data is rempesin Figure 6. In the figure, clusters and
channels can still be identified, but the clustars not spherical. Instead, they are more like

pore-junction regions where channels cross.

3 Governing equations and treatments

One needs the same number of equations as unknowiypically, this requires four
equations for the four unknowns in the membranevater flux, water chemical potential,
electrical potential, and current density. As nwmmd above, the main difference between
membrane models basically comes down to how thegt tiransport, and specifically water
transport, in the membrane. While some models msg driving forces of pressure or
concentration, depending on what is assumed to dmingting, the correct one to use is
chemical potential. As will be shown, this drivifigrce is thermodynamically rigorous as it
incorporates the other driving forces.

Besides the transport equations, there are alsottie governing equations, most of which
are the same for the different models. The mengbraodeling equations can be broken down
into four main types. The first are the conseorai equations, the second are the transport
relations, the third are equilibrium relationshipsd the fourth are the auxiliary or supporting

relations, which include variable definitions, peofy expressions, and such relations as
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Faraday’'s law. In this section, the various equetiare examined. The discussion is divided
based on the phenomenon that the governing equatidresses. Furthermore, the auxiliary
equations and equilibrium relationships may depmmthe modeling approach and equations, or

may even be separate models (see section 4).

3.1 Material balances

The conservation of material equations are esdgnitentical for the various membrane
models. Furthermore, they are also relatively sngince there is nothing occurring in the
membrane in terms of reactions or source termss riecessary to write a material balance for

each independent component in the membrane. ferelitial form, this can be expressed as

ocC.
- _V.-N. 2
at 1 ( )

wherec, andN, are the concentration and flux density of spegiesspectively.

The term on the left side of the equation is theuawlation term, which accounts for the
change in the total amount of speciekeld in the membrane within a differential control
volume. This term is assumed to be zero for alralbstf the membrane models discussed in this
review because they are at steady state (exceptdee discussed in section 5.3). The term on
the right side of the equation keeps track of tta@emal that enters or leaves the control volume
by mass transport.

Because protons are the only mobile ionic speciethe membrane, the proton flux and

current density can be related through Faraday’s

N, =— (3)
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wherei is the superficial current density in the membrandF is Faraday’s constant. If one

assumes electroneutrality,

2.%6 =0 4)

where z is the charge number of specieshen by conservation of charge and substitution o

equation 3 into equation 2 results in the govermiqgation for the current (or proton flux) of
V-i=0 (5)
The assumption of electroneutrality implies thaé ttiffuse double layer, where there is
significant charge separation, is small compareithéovolume of the domain, which is normally
the case (for exceptions see section 5.2). Alsaplé-layer charging is ignored in the above
equation since double layers are only expecteatist at the membrane interfaces and not inside

the membrane.

3.2 Proton and water transport phenomena

The major species being transported in the membamaewater and protons, since the
anionic sulfonic acid sites are tethered to the brame backbone. Thus, two transport equations
are required. As discussed in section 2.2, theeetlaree main categories of models, the
diffusive, the hydraulic, and the combination. Eas discussed below in turn, but before

discussing them, some mention should be made abupte approaches.

3.2.1Simple models
The simplest models of the membrane that treasp@m in the membrane in a nontrivial
manner ie., they consider species transport and not just polarization curve with empirical

parameters) make several assumptions and use gsopie fransport expressions along with the
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material conservation equations above. These m@delaimed at examining effects outside the
membrane €.g, cathode flooding [34-48]) or when only genenants are desired [49-54].
Furthermore, these models assume constant valugansport properties in the membrane and
thus are not applicable when the water contenthef membrane is expected to vae/g
membrane dehydration). Such assumptions alsotlmaipredictability of these models.

Since the membrane is stationary, only the watdrpgatons move in the membrane system.
For the proton movement, the simplest treatmettt ise Ohm'’s law (equation 29 in differential
form)

i =—kV®D (6)
wherex is the ionic conductivity of the membrane (whishassumed uniform) and is the
electrical potential in the membrane, which is dedi with reference to a standard hydrogen
electrode at the same temperature and electrayge Kafior") as the solution of intereste,, it
carries its own extraneous phases with it). Thevalexpression can easily be integrated to yield
a resistance for use in a polarization equatioe ¢getion 2.1).

For the movement of water through the membrane)uwe\wofp, the net water flux per proton

flux,
p=—2 (7)

is often assumed or is calculated based on ther\ilatein the anode or cathode region. Most
models that use this approach also treat the catilyer as an interface, which allows for the
water flux to become a boundary condition thatitedlly related tg3. While this approach has

merit in terms of convergence issues and allowimg &nalytic expressions to describe the

membrane, it has limited usage under most fuelemgltitions sinc@ is not knowna priori.
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Before proceeding to discuss more rigorous treatsnehtransport in the membrane, two
mentions should be made about hybrid approachasthd first approach [55], the transport
equations are solved in a more rigorous fashiotississed below, and a database generated of
values off andi as a function of the ratio of at the anode and cathode and a dimensionless
Peclet number for water in the membrane. Suchtabdae is useful for complicated and
computationally costly simulations.¢, 3-D computational-fluid-dynamics ones). In #ezond
hybrid approach [56-58], the conductivity is modehkgorously, and the transport of water is
basically ignored. The reason for this is thatrtiedels are more concerned with examining the
polarization effects of the cell and not the watenagement. While this approach is all right for
optimization, very complex models, or effects adesof the membrane, ignoring fuel-cell water-

management is not generally advisable.

3.2.2Diffusive models

The diffusive models treat the membrane system siagle, homogeneous phase in which
water and protons dissolve and move by concentratnal potential gradients. They correspond
more-or-less to the vapor-equilibrated membrane Esgure 5), or in other words a membrane at
lower water content. Many membrane models, incdgdome of the earliest ones, treat the
system in such a manner. The diffusive modelsnatioe to predict such effects as membrane
dehydration, as shown in Figure 7. As the curdamisity is increased, the water content of the
membrane decreases, causing a larger ohmic drof diseeffect on conductivity. Furthermore,
the profiles become more curved as the currentityeissincreased because of the interactions
between the water gradient and electro-osmotie8ur the membrane (see equation 11). There

are two main ways in which the diffusive transpmah be treated, first by dilute solution theory
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and second by concentrated solution theory. Thado approach is simpler to implement and
may Yyield sufficiently correct answers, especiatiyerms of current density. However, it lacks

the universality and rigor of the latter approaehich can be applied for all water contents.

3.2.2.1Dilute solution theory

Dilution solution theory starts with the use of thernst-Planck equation [59]
N, =-zu, FGV®-D, Vc, +c v (8)
The first term in the expression is a migratiomterepresenting the motion of charged species

that results from a potential gradient. The migratflux is related to the potential gradient

(-V®) by a charge numbeg,, concentrationg,, and mobility,u,. The second term relates the

diffusive flux to the concentration gradient usimgliffusion coefficientD,. The final term is a

convective term and represents the motion of tleeisp as the bulk motion of the solvent carries
it along. For one-phase treatment, the solvetitasnembrane, and thus= 0.

Dilute solution theory considers only the interant between each dissolved species and the
solvent. The motion of each charged species isritbesl by its transport properties, namely, the
mobility and the diffusion coefficient. These tsport properties can be related to one another at
via the Nernst-Einstein equation [59-61]

D, = RTu, 9
whereR is the ideal-gas constant ands the absolute temperature. So long as theesepécies
are sufficiently dilute that the interactions amdhgm can be neglected, material balances can
be written based upon the above expression fdiukdequation 8).

For the protons in the membrane, equation 8 redtw&3hm’s law, equation 6. For the
movement of water in the membrane, the Nernst-Rlagoation reduces to Fick’s law,

18



N, =-D,Vc, =-D, VA (20)
because water has a zero valance. The secondtgquahes because the concentration and
diffusion coefficient of water can be written asi¢tions ofi if desired, as discussed in section
4.3. The models that utilize the Fick’s law treatrhare interested mainly in modeling effects
outside of full cells [38, 41, 62-67]. Thus, thigpically assume a constant diffusivity, resulting
in a linear gradient ok in the membrane. This allows one to estimatewthter flux by just
knowing the water content of the membrane at itglarand cathode interfaces.

While equation 10 stems from dilute solution theomyore rigorous membrane models
incorporate the observation that the moving protodsce a flux of water in the same direction.
Technically, this electro-osmotic flow is a resaftthe proton-water interaction, and is not a
dilute solution effect since the membrane is tai@rbe the solvent. As shown in the next
section, the electro-osmaotic flux is proportionalthe current density and can be added to the

diffusive flux to get the overall flux of water
Nw = &IE_ DWVCW (11)

whereg is the electro-osmotic coefficient, the numbewater carried per proton in the absence
of a concentration gradient. The above equati@ah@imm’s law have been used successfully for
most of the models that treat the membrane asghesphase [10, 62, 63, 65, 66, 68-82]. The
deviations and complications in the models arisenfwwhat functions are used for the various
membrane transport properties and water content the constitutive and supporting relations

but not the governing-equation framework), as dised in section 4.
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3.2.2.2Concentrated solution theory

For an electrolyte with three species, it is magonmous and almost as simple to use
concentrated solution theory. Concentrated solutizeory takes into account the binary
interactions between all of the species. In addjtit uses a more general driving force, namely,
that of chemical potential. As discussed lateis "#ilows for the concentrated-solution-theory
equations to be valid for both the diffusive anditaylic models, the only difference being in the
interpretation of the chemical potential. Consexlye if concentrated solution theory is used,
the model can easily become a combination oag ¥Yalid for all water contents), as discussed in
section 3.2.4.

For membranes, concentrated solution theory watsallgi used by Bennion [83] and
Pintauro and Bennion [84]. To do the analysis, staets with the equation of multicomponent

transport

d, =cVy :zKi,j(Vj_Vi) (12)

j#i
whered, is the driving force per unit volume acting on @psi and can be replaced by a

chemical potential gradient of specied85], K;; are the frictional interaction parameters

between specieisandj, andv; is the velocity ofi relative to a reference velocity (that of the

membrane, which is stationary). The treatmentqufagion 12 can now be done in one of two
ways.
The first treatment is to introduce a concentragoale and relate the frictional coefficients

to binary interaction parameters

X RT
K . :CTX'L (13)

) D

i
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where D, ; is the binary interaction parameter between speci@and j, c; is the total

concentration, and is the mole fraction of speciés Doing the above substitution into equation

12 results in the so-called binary friction model,

_ v RTX[N; N | RT(N;
Vi =2, ij( J Dfm( ] -

=i ¢ G G

where the m denotes the interaction with the mengend e denotes an effective property of
the membrane. As discussed by Fimateal [3, 86], this treatment is similar to that of the
dusty-fluid model applied to the membrane [87-88)t accounts for the bulk movement of
water in a more consistent manner using a differefietrence frame. This analysis is akin to the
analysis of gas movement in porous media presdijyabfeber and Newman [90]. It should be
noted that since the above treatment also impliaitcounts for convection, the model is more of
a combination model and not just a diffusion orsementioned in the next section. A proton and
water form of equation 14 can then be used to mdueltransport in the membrane, which
results in equations similar to Nernst-Planck (éigua8), except that the cross terms are
accounted for (see equations 16 and 17). The madthelt use the above formulation are
primarily focused on modeling the conductivity bEtmembrane, and are discussed in section
4.3.

While equation 14 can be used, it is somewhat cateld and requires predicting or
measuring the necessary binary interaction paramefesimpler and just as general approach is
to use equation 12, but instead of changing thaidnal coefficients into binary interaction

parameters, the equations are inverted instead

N; :_Z LGc;Vuy, (15)
j
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where thel, ;’s are related directly to th&; ;’s [90]. For the three-component membrane

system, there arel¥N —1) = 3 independent transport properties that areewéo characterize

the system. Thg, ;’s can be related to experimentally measured t@mgpoperties using a set

of three orthogonal experiments [84, 90, 91]. [Doihis results in the proton and water

governing transport equations,

i:—% Vi, -k VO (16)
and
NW =£IE_O'WVMW (17)

respectively, where., is the transport coefficient of water. The abegeations have also been

arrived at using an irreversible thermodynamicseagh [92, 93].

Upon comparison of equation 16 to 6, it is seenttia proton-water interaction is now taken
into account. This interaction is usually not &gnificant, but it should be considered when
there is a large water gradiem.dq, low-humidity or high-current-density conditions)Jpon
comparison of equation 17 to 11, it is seen thatdfuations are basically identical in form
where the concentration and diffusion coefficieimvater have been substituted for the chemical
potential and transport coefficient of water, respely. Almost all of the models using the
above equations make similar substitutions foreahesiables [3, 9, 90, 94-96].

The exceptions to this are the models of Janss@naj@d Weber and Newman [91], where
the chemical potential is used directly. Janssiked the transport coefficient as a fitting
parameter, and Weber and Newman relate it to expetal data. Both models demonstrated
good agreement with water-balance data under atyasf conditions. Janssen states that using
a chemical-potential driving force does not nedassimaking the distinction between diffusive
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or convective flow in the membrane. However, asyéie [98] points out, by assuming the
membrane system is a single phase, it cannot suppgaessure difference inside it. The only
way that a single-phase membrane model can havessye difference across it is if the
chemical potential or water concentration is beafigred at the boundaries. This problem is
why single-phase membrane models cannot adequdéslgribe transport for fully hydrated
membranes where the driving force is the liquidspuee. For this case, one needs to use a two-
phase model, although the above concentrated-goithieory equations remain the same (only

the transport coefficient and chemical-potenti&tipretation change) as noted below.

3.2.3Hydraulic models

In opposition to the single-phase treatment abogedlee models that assume the membrane
system is two phases. This type of model corredpdn the liquid-equilibrated membrane
shown in Figure 5 and Figure Be(, high water contents where there is a bulk-ligeitl-water
phase in the membrane). In this structure, the lon@ne is treated as having pores that are filled
with liquid water. Thus, the two phases are watet membrane.

The addition of a second phase allows for the mandrsystem to sustain a pressure
gradient in the water because of a possibly unknstngss relation between the membrane and
fluid at every point in the membrane. Howeverfudifon of water becomes meaningless since
the water is assumed to be pure in the models siseduhere. Furthermore, unlike the models
discussed above, the water content of the membsamsually assumed to remain constant(
22) as long as the membrane remains fully liquidildgated and has been pretreated
appropriately. For the transition case betweemdigand vapor-equilibration, see sections 3.2.4

and 4.1.1.
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The first model to describe the membrane usingdrdufic approach was that of Bernardi
and Verbrugge [11, 12], which was based on eanl@k by Verbrugge and Hill [99, 100]. This
model utilizes a dilute solution approach that udes Nernst-Planck equation (equation 8) to
describe the movement of protons, except that masvnot equal to zero because they move in

the separate water phase. The velocity of thenm&tgve by Schlogl’'s equation [100, 101]

V= —(EJVDL— (ﬁ)zf ¢ FVo (18)
H H

wherek andk, are the effective hydraulic and electrokineticnpeability, respectivelyp, is the

hydraulic or liquid pressurey is the water viscosity, and, and c, refer to the charge and

concentration of fixed ionic sites, respectively.

In the above system, the movement of water cantbibuaed to a potential gradient and a
pressure gradient. The movement of water by aspreggradient is determined primarily by an
effective permeability of water moving through {here network. This approach is quite useful
for describing fuel-cell systems as long as the brame is well hydrated with a uniform water
content. Such a treatment does not necessarily iself to describing the flux of water
resulting when there is a water-activity gradiegrioas the membraned,, when the membrane
is not fully hydrated). Many other models use shene approach and equations as Bernardi and
Verbrugge, especially for systems wherein the mambis expected to be well hydratedg
saturated gas feeds) [102-109].

Instead of the dilute solution approach above, entrated solution theory can also be used
to model liquid-equilibrated membranes. As don&\sber and Newman [91], the eq